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Distributional Properties of the Three-Dimensional
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This paper gives distributional properties of geometrical characteristics of the
Delaunay tessellation generated by a stationary Poisson point process in R>.
The considerations are based on a well-known formula given by Miles which
describes the size and shape of the “typical” three-dimensional Poisson
Delaunay cell. The results are the probability density functions for its volume,
the area, and the perimeter of one of its faces, the angle spanned in a face by
two of its edges, and the length of an edge. These probability density functions
are given in integral form. Formulas for higher moments of these characteristics
are given explicitly.

KEY WORDS: Delaunay tessellation; Poisson Delaunay cell; Poisson point
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1. INTRODUCTION

The Delaunay tessellation is an important model for the approximation of
real structures in a wide field of research. It is a space-filling subdivision of
the d-dimensional Euclidean space R into d-dimensional simplices, whose
vertices are the points of a point process. In general, any (d+ 1)-tuple of
points of a point process generates a d-dimensional ball. A cell of the
Delaunay tessellation is generated by such a (d + 1)-tuple, if and only if the
d-dimensional ball does not contain another point of the point process.
The Delaunay cells are triangles in the two-dimensional (d=2) and
tetrahedrons in the three-dimensional (d=3) case. These cases are
important for applications of this model in crystallographic studies, for
approximations in the continuum and quantum field theory, for studies of the
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mechanical response of heterogeneous materials, and in many other fields.
Much of this work is summarized in Okabe et al,'"” Kumar and Kurtz,®
and references therein. The results are obtained mainly by simulation.

Under the assumption that the generating point process of the
Delaunay tessellation is a Poisson point process, a theoretical investigation
is possible by methods of integral geometry'® or by the theory of Palm
measures.'* The distributional properties of the size and shape of a Poisson
Delaunay cell for an arbitrary dimension are completely described by
Miles,® formula (76). This result is used as a fundamental relation for the
determination of the geometrical characteristics for the three-dimensional
Deleunay tessellation generated by a stationary Poisson process.

Formula (76) in Miles'* (in the following called Miles’ formula) has
been often used for the two-dimensional case (e.g., refs. 5-8). In contrast,
Miles’ formula has rarely been used for the three-dimensional Poisson
Delaunay cell, because the number of integrations increases up to nine.
Simulation studies of geometrical characteristics are made in Kumar and
Kurtz® for the three-dimensional case.

The present paper gives analytical results for geometrical charac-
teristics of the three-dimensional Poisson Delaunay cell. The considerations
are based on a modification of Miles’ formula given by Muche,"”’ which
has a more suitable form for an analytical treatment.

Probability density functions are given for the following characteristics
of the three-dimensional Poisson Delaunay cell:

— the cell volume and the equivalent radius (radius of a ball of equiv-
alent volume)

— the area of a face

— the perimeter of a face

— the length of an edge

— an angle in a face spanned by two of its edges
In general, such probability density functions cannot be given explicitly,
but in the form of multiple integrals. The graphs of these functions are
obtained by numerical integration. Expressions are given for the moments

of these characteristics explicitly. A short summary is given for the one-
and two-dimensional cases as well.

2. MILES’ FORMULA

Let D denote the Delaunay tessellation with respect to a stationary
Poisson point process @ in R with intensity A. Let D denote the “typical”
cell of D. The work “typical” is used as in Stoyan et al,"'® p. 110. This
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“typical” cell D of D is equivalent to the set of all inner points of a
d-dimensional simplex spanned by 4+ 1 points z,, z,,..,z, and z,, ,€®
with the property

=il =Mzl = =lzyl =z, 1 =4

This means that these d+ 1 points are placed on the boundary of a
d-dimensional ball &(o, 4) of radius 4 centered in the origin o and there are
no points of @ closer to o.

Let U, denote the projection of the point z; (i=1, 2,.., d+ 1) onto the
unit sphere db(o, 1), where z;= U, 4, 0 < 4 < oo. Thus the size and shape of
the “typical” Poisson Delaunay cell are completely characterized by the
radius 4 of the ball and the 4+ 1 unit vectors corresponding to the vertices
of D. The corresponding probability density function is given by Miles’
formula [ref. 3, formula (76}]

N . osdi—1 1
i Ut U Ug o (05 My Uy Uy g} = K 0 exp( —Aw,07) v (uy, Uz sy Uyiy)

Here, w,=n"?/I(d/2+ 1) denotes the volume of the unit d-ball,
vty Uy tty ) 1s the (in general positive) d-dimensional Lebesgue
measure of the simplex spanned by d+ 1 unit vectors u,, u#s,..., i, , and
K, is a coefficient depending on d. Let @ be a random variable defined for
D which is invariant under Euclidean motions (for example, the
d-dimensional Lebesgue measure of D or the length of one of its edges).
Then the distribution function Fg(#) is given by

o integrations

T
Fol)=xr, J f J ¢! exp( — Aw,09)
0 8bto. 1) dblo. 1)
—_——
Q<
XV {8y Ugyeory Uy 1) @ity -+ Al dit) dO (2.1}

For the three-dimensional case (2.1} has been simplified by Muche,'®’ using
a Cartesian coordinate system (&, #, ) in such a way that the unit vectors
have the coordinates

uy =&, =1, &) wry={&y. 07y, ¢y)
u3=(éla 11, C3), U, ={(&y, Has Ca)

with £, <&, 5,20, and ¢, <{;. Let u} (i=1, 2, 3, 4) be the projection of
u; onto the (5, {) plane. Let «, and «, be the angles v ou’ and u5ous; f the
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angle spanned by u,, o, and the positive ¢ axis; y the angle spanned by the
negative { axis, o, and uj ; and, finally, h=¢&, —¢&, the height of the
tetrahedron. Then (2.1) takes the simpler form

F9(9)=1;£)~3 J.Ooo Ln Lucos/f LG LG—a. J.Ozn 5 exp (~4%,153>

~— —— s

O <0

oy + 0y
2

x hh sin® B <sin9‘2—‘sin°-;33in >-dy day do, dh dp do

(2.2)

The structure of the integrand allows a separation of Fg(#) into factors,
namely

o 2n pl +cosfi
Fo(0)= [ fadrds [ [ faulBh) dndp
0 o Yo
— S——
e<f o<
2n 22n—u 27
xj J fA,.A;(“h“z)d“zd“lj Srivydy (2.3)
o “o 0
— ——
o<o e<g
with®

2 333
fd(é):3 ZA 58e>&p<—?6-‘>, 0<d< oo

105
fB',,(,B,/1)=6—4hsin5/>’, O<h<l+cosf, 0<f<nm

3n?

o+ a5\
2

16 /. a . a, .
Say (g, 0) == sin - sin =*sin
0o, <2n~a,, 0<a,<2n

and

fr()’)=_, 0<y<27t

The behavior of size and shape of the three-dimensional Poisson Delaunay
cell D is completely described by formulas (2.2) and (2.3).
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3. RESULTS

This section summarizes integral expressions for probability density
functions f(f), formulas for the kth-order moment, k=0, 1, 2,.., the
variance var @ = E(® — E@)?, the skewness skw @ = E(@ — E@)?/(var ©)*?,
and the excess exc @ = E(@ — E®)*/(var @)> —3 for several geometrical
characteristics @ of the three-dimensional Poisson Delaunay cell. The
abbreviation

glay, a,) =sin(a, /2) sin(a,/2) sin[ (a; +a,)/2]

is used in the probability density functions.
Numerical values are summarized in Table L
The probability density functions are plotted in Figs. 1-4.

Table I. Properties of Geometrical Characteristics of the Three-Dimensional
Delaunay Cell to a Generating Poisson Process of Unit Intensity”
[&] E® E@? E@? Eo*
V 0.1477600595 0.0371983367 0.0134741017 0.0064177669
R 0.3039813467 0.1001274593 0.0352751158 0.0131649871
S 0.5972864450 0.4675444061 0.4444664589 04913927123
P 3.7111010836 14.6399982926 60.8389538054 264.5488393183
L 1.2370336945 1.7155937900 2.5850244273 41559502764
A 1.0471975512 1.2699340668 1.7136395601 25115877519
(2] var @ sd @ skw @ exc @
vV 0.0153653015 0.1239568533 1.8045024895 50345713432
R 0.0077228001 0.0878794636 0.2107951308 —0.1382798960
S 0.1107933087 0.3328562883 0.8909815462 0.9482501001
P 0.8677270400 0.9315186740 0.0841202890 —0.1304754550
L 0.1853414286 0.4305129831 0.0530118838 —0.3324898903
A 0.1733113556 0.4163068047 0.2880812204 —0.2833923139

“ The parameter @ stands for the cell volume V, the equivalent radius R of V, the area of a
face S, the perimeter of a face P, the length of an edge L, and the angle inside of a face 4
{sd = standard deviation).
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Fig. 1.

Muche

The probability density function of the volume of the three-dimensional Poisson

Delaunay cell (1) and that of the equivalent radius of volume (2). The intensity of the
generating Poisson process is 1.

Fig. 2.
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The probability density function of the area of a face of the three-dimensional
Poisson Delaunay cell. The intensity of the generating Poisson process is 1.



3D Poisson Delaunay Cell 153

0.0 + + + +
o 2 q 6 a

Fig. 3. The probability density function of the perimeter of a face of the three-dimensional
Poisson Delaunay cell. The intensity of the generating Poisson process is 1.

0.0 + + +
o 1 2 3

Fig. 4. The probability density functions of the length of an edge of the three-dimensional
Poisson Delaunay cell. The intensity of the generating Poisson process is 1.
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3.1. The Volume V

The results given in this section are based on formulas (2.2) and (2.7)
First consider the volume of the Poisson Delaunay cel D of D in R* It
given by i-area of lower surface- height, which means substituting thc

volume @ = V and v = 26%g(«,, a,)/ sin” § in (2.3). Transposition to J give:

R 30 1/3
0= <2g(ocl , &) A sin? ﬁ>

with the derivative

RV N
v 3\2g(x,, as)hsin? g v?

Simplification and differentiation of (2.3) with respect to v gives

Wt p2ar—ay pm cos f8
O RN s vy

2

2riv
X E€Xp <——m> dh dﬁ dflz docl

The integration with respect to /2 by use of the substitution s = 1/r leads to
the probability density function of the volume of the three-dimensional
Delaunay cell D

fv(v)= 352/12 Jozn Eﬂ—m f: vsin

x ex < —2nlv
P\&(,, ax)(1 +cos §) sin? §

Note that the slope of f,(v) at v =0 is finite; the derivative takes the value
df(v)/dv =70(nl)> The kth moment of V is well known [cf. Miles,'*’ for-
mula (77), for the special case d=3, or Mpller,'"*’ formula (7.35)]

" 35 /nlk + 1) (k +2)! (2k +4)!

>dﬁda2da,, p=0 (3.1)

= 3.2
256{I'(k/2 +2)}* I((3k +9)/2)(16nL)* (3.2)
Variance, skewness, and excess are given by
302407% — 175175 1 (12250/864 — 967%/143)
V= kw V=
var 82368712 S =00 /70 (31143 —35/288) 2
exc V= 6 23039769607m* 4 323323(552967> — 875875)

11305 (864n* —5005)*



3D Poisson Delaunay Cell 155

Th: equivalent radius R is connected with the volume by V=%zR*
Therefore, the substitution » = 37r* in (3.1) leads to the probability density
function of R,

Srlr )“‘%82( nA)* 1 SJ’RL’” B L sin

 ex ( —8nAr?
P 3g(x;, x5)(1 +cos B) sin® B

)db’dazda,, rz0

For the determination of the moments, the order of integrations can be
changed. Now we use the well-known integral formulas

v (a+life
[ 3 expl~bxe) = (1) r(” 1), 0<a b c<oo(33)
o c\b ¢

and
/2 Ha+ 1) I(b+1)
2a+1 2b+1 P
jlo sin X €O8 xXdx= arbr2)
—w<a,b<+w {3.4)
This gives

35 F(k+2)
K
EV:= 8n? (27:/1

X {g(a,, 012)}’“rz dp do, do,

n 22—
f f (1 +cos B)f+2sin*+5 8

and use of (3.2) leads to

752 (3c +2)
25T((3c + 3)/2){T(c/2 + 1)}

f" FH' {0y, o)) daty diry = (35)
) 0

for real ¢ =0. Use of (3.5) finally leads to a kth-moment formula for the
equivalent radius

35383 (k/3 4+ 2) I'(k/3 +3) I(2k/3 +5)

ER*= 3% +8, 2k/3—1/2 3 %3
2%+ B 2/ /'{F(k/6+2)}‘F((k+9)/2)l/'
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with

var R=

125 [ I} 6053 I(% )}]
()R | 17496 M%)} 2 3™ N(D)}°

skw R=5{7-3%2{ (Y3 {r)}°
+4400007°2[ 6057{ I'($)} ¢ —2457{ (%)} *]}
x {/2 n[24877125{ (%)} * { T(1)} ® — 6050007 *{ I($)} 4172}
exc R={[1233792{ I'($)}® —2640625{ I(3)}°]
x319.49{ (1)} 2 =8 - (11)* (10m)® { ()} ©
+6342336(10m)7 { (1)} — 779625 - 187(3m)¥* {I(H}* {11} °}

x {[1250(D]037- 91 N@)} {1(3)}* — 4840 { [(5)} 1]} °

3.2. The Area S of a Face
The behavior of the area of a face can be investigated by use of (2.3).

Putting @ =S and using the probability density function

) [+cosff 105
f,;(/f)=£) SauBo k) dh=2sin® B (1 +cos ) 0<p<n

gives the distribution function of the face area in the form

:”ﬂ‘fﬁ..,ﬁ(a[, %) [ B) [ (0) dos do, dB dd

S<w

Because of s=2(J sin 8)2 g(a,, a,), the substitution & = [s/g(x,, x,)/2]"?%/
sin f#, simplification, and differentiation with respect to s lead to the prob-
ability density function of the area of a face

35mA* 2 p2m—m o en $7R(] cos §)?
f(b 77\/-J J J' {g(a,,ag)}s’/zSin"/f’

— /2 s
] . '2
" <3{g(“1~az)}3/2 sin-‘ﬁ) dp de, da, 520
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The moments are obtained by use of (3.3)—(3.5)

35.3%R(k +4) I(2k/3+3) Itk +3) I'(3k/2+ 4)

ESk - 10k/3 9 2k/3—-1/2 3 71\ 3
2RI BT (/2 +2))° Tk + 9/2) A7
175 [I(43) 4315{I(5/3))
var S =5 en 212)2/3[ T

_2./77(22-31%2% ~ 5 10* . 3% + SUTT{I(5/3)})
125(18%2°I(4/3) — 77 - 5*{ I(5/3)} 2)*?

exc §={[(87)*—1365]-3""(44m) I'(3)
+[(122)* /3-77-5%{ (%)} ]
x 6006 - 5T(3) — 18%- 9757*{ I'($)}*
x {325[18°22I(%) — 77 - 5*{ [(3)}?]

}
2} ~
3.3. The Perimeter P of a Face

Analogously, use of ® = P and

5=p/[25inﬂ<sin%+sin%+sina';—%)]

leads to the probability density function of the perimeter of a face

/ ( )_Mi 2nJ~2n—1|J~n pﬂ{g(al’az)}l(l_’_cosﬂ)z
mnpl= 27.9 )y Sy o sin® B(sin(a, /2) + sin(a,/2) + sin[ (o, +5)/2])°

—Anp
X exp <6 sin® B(sin(a, /2) + sin(a,/2) + sin[ (&, +a2)/2])3>
x df do da,, p>0

Use of (3.3), (3.4), and a sequence of lengthy but elementary integrations
with respect to a, and «, leads to the further expressions

1715 6\'"?
' .
EP =71 r< )(ﬂ)
. 3200/128 3 5\/ 6\2?
EP == <75n2+§>r<§><ﬁ>

12525975 71680 / 435 8192\ _/4\/ 6 \ ¥
p 227D 4 _ V()2
£ 2772 EP =51 <1024+7357t‘>r<3><n/1>
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16384 + 9007 5 1715 4\12)/ 6 \*?
VarP:{( 2437 >F<§>_{ 512 r<§>} }<E>
skw P =21072{3645 /3 [ 12215808 +5 - 7%{ ')} *]

—27149[2'2 + (157)]}
x {22°[2"2 4 (157)2] 113 — 175 - 21522{ (4} 2} =

6 >
exc P=o- (567-30%- 11 /312" + (157)]

—2'1.945%.111796224177*1(3)

+2%(97)2 I(4)—99 . 7" [457(%)]

—2". 772" + (152)*]° {(5)} 7}

x {20212 4 (157)2] I(3) — 175 - 2522 (%)} 2} 2

3.4. The Length L of an Edge

Consider the length L of an edge of D. For the determination of its
probability density function consider the central angles 4, and 4, occurr-
ing in (2.3). The edge length and one of these angles are connected by
/=6 sin(«, /2). Therefore knowledge of the probability density function

fA|(al)=J0.n 1If‘A].A1(a" (12) da’2

is needed, namely

~/"_4](oc,):371Zz [(24+cosa, H2n—a;)+3sino; J{1 —cosa,)

0<a,<2n (3.6)

Now the distribution function F,(/) is given by

Folhy = [[] £aa) 1 B) £.(0) dx, df do

L</
Substituting 6 =//[2 sin(«,/2)] and taking into account that

2x o 2n o In o
RS | e s 1

J (27z—oc,)sm‘—docl=[ oclsm‘—'dalznf sin® — da,
0 2 Y0 2 0 2
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for real ¢ leads to the probability density function of the length of an edge
of D,

Jih)

_3522)° r/l r/z 132 —sin? B)(3 — 2 sin? @)
T 9.27 g g sin® B sin’ ¢
A3
xexp< ;__) do dp, =0

" 6sin’ Bsin® ¢

The moments are obtained by use of (3.3) and (3.4),

[i 3 (k+8)k+6) j_<3 k><6>"/3

“RHrnk+90k+3) O3

S5 G-G O

skw L =% (2173811 4 3. 378 I($)}* — 22153727/3572)

x[2°1(3) —9-7{($H)}*]

exc L=[2%.7./3 I'%)(1078 - 70°n — 183827583 ,/3)
—2%4125{(3)}* — 668250 - 7'2{ (%)} *]
x {1375[2*°I(3)~-9-7%{($)}*1*} !

3.5. The Angle A in a Face Spanned by Two of Its Edges

Finally, (3.6) and A, =24, central angle=2-angle at circumference,
lead immediately to the probability density function of the angle spanned
in a face by two of its edges. The moments are obtained by integration by
parts and (3.4),

4 .2
S(a) =37 [2(m —a)(2 4+ cos 2a} + 3 sin 2a] sin” a, O<a<nm

with
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These results were already given by Kumar and Kurtz.'> The further
expressions are

_ 167* — 607> — 105 _ 327*—180n° — 135

3 EA4
E4 1607 : 480
73135 —21/327 31485 — 167°
Sl ot it A=227 OF
skw A =g T3 A= G 227)2

4. THE LOWER DIMENSIONAL CASES

The method given here can be used in the same manner for the one-
and two-dimensional Delaunay tessellations.

4.1. The One-Dimensional Delaunay Cell
In the case d=1, (2.1) takes the very easy form

Fo(6) =22 jo exp( —245) do

——
@<

which means that one-dimensional Delaunay cells are simply segments
with a random length (one-dimensional volume) V. Substituting @ = V' and
v=20 gives the probability density function

Si(v) =Lexp(—Av), t=0

with

.
EV":G) Mk+1)

and var V'=1/2%, skw V=2, and exc V' =6. These results are well known.

4.2. The Two-Dimensional Delaunay Cell

In the case d=2 the cells of D are planar triangles having the radius
4 of the circumcircle and the central angles 4,, 4,, and 2r — A4, — 4, (see
Table IT). Then Miles’ formula (2.1) can be written as
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dnA? e (2 pm—w ,
Fol6)=—5 jo jo jo 8% exp( — And?)
\.—W~/
O<l
+ o,
xsm751n75m 5 = doty doty dO (4.1)

Let V denote the area (two-dimensional volume) of D of D. Using again
glay, a;) =sin(a, /2) sin(a,/2) sin[ (a; +;,)/2]

the connection between the triangle area, the radius of the circumcircle,
and the central angles is v =26g(«,, x,). Connected with (4.1), this gives
immediately the probability density function of the area V of D of D for
d=2 (see Fig.5),

7z 2n 027 —ay 1 —Anv
=—4 2 5 >
frlo) =g f L g(al,ag‘”‘p<2g(a1,a2))d°‘-d°“ v>0

Use of (3.3) and (3.5) leads to

EVE I(k/24+ 1) I'((3k+5)/2)
_3.2knk—1/2{r((k+3)/2)}2lk
35 —2n?
varV=—goe
2242 — 15)
kwV=—-—"5—-"
=5 2
o Ve 2331 + 120%* — 24n*

(35-2r%)?

Substituting v = nr’, we immediately obtain the expression for the equiv-
alent radius R (a circle having an area equivalent to the area of D),

_7'[_ 3 2n ~2n— ) 1 —},7[21‘2 S
=5 [ g () ot 720

822/84/1-2-11
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Table Il. Properties of Geometrical Characteristics of the Two-Dimensional
Delaunay Cell to a Generating Poisson Process of Unit Intensity”

@ E® E@? E®? Ee*

174 0.5000000000 0.4432801784 0.5699316580 0.9633982722
R 0.3637754544 0.1591549431 0.0799998190 0.0449136724
P 3.3953054526 13.2629119243 57.9388014224 277.7416286004
L 1.1317684842 1.5915494309 2.5938223012 4.7283219033
A 1.0471975512 1.3599120891 2.0261201264 3.3284062697
@ var @ sd @ skw @ exc @

vV 0.1932801784 0.4396364162 1.8242427745 5.0561445543
R 0.0268223618 0.1637753396 0.5892595020 0.2502552768
P 1.7348128077 1.3171229281 0.4931047489 0.1724363860
L 0.3106495291 0.5573594254 0.5162778297 0.0618276348
A 0.2632893779 0.5131173140 0.3744793156 —0.3812822265

¢ The parameter @ stands for the cell area V, the equivalent radius R of V, the perimeter of a
cell P, the length of an edge L, and the angle spanned by two edges of a cell 4 (sd = standard
deviation).

0.0 + + + +
0.0 0.5 1.0 1.5 2.0

Fig. 5. The probability density function of the area of the two-dimensional Poisson
Delaunay cell (1) and that of the equivalent radius of area (2). The intensity of the generating
Poisson process is 1.
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Fig. 6. The probability density function of the length of an edge (1) and the perimeter of a
cell of the two-dimensional Poisson Delaunay tessellation. The intensity of the generating
Poisson process is 1.

Use of (3.3) and (3.5) gives

I((k+4)/4) I3k + 10)/4)
3-2FPaF 1Rk + 6)/4)) 2 A%

varR=2—7ld-[l—<4—O%> ]
275
2°5{I3

ER* =

16 _2126757*{ I'(3)}® + 3%77x7
skw R = )
z
3

)} (97 — 1600{ I(3)} %)

exc R=[3*n%(280 — 2317 —48n?)
+226757{ M(5)} ¢ —2"73. 54 I(3)} '¢]
x {24197 — 1600{I'($)} *1} ~

For the perimeter of a cell, substituting & = P and

o 0y .o + e
=26 sin = + sin — + sin ;>
p < 2 2 2

§22,84/1-2-11*
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we obtain for the probability density function of the cell perimeter (see
Fig. 6)

glay, as)
[sin(a,/2) +sin{a,/2) + sin[ (&, +a,)/2]]*

fup =2 [

—_— an—
X exp <4[sin(al/2) ¥ sin(oz/2) + sin[ (a, +oc3)/2]]2>
X doy doty, p=0

and (3.3) leads to

EPA—2A+1F(2+k/2) J-Zn J-zn—aq g(a o)
= 1 Yy

gkl +1 k72

oy +a
2

. .0y . 2 k
X sm7+sm—2-+sm =) do, da,

In particular, the results are

32 125
1_ - _1%
EP' = 3V EP* 3nl

2257 +9216 13706
Epi=" T Pt =

w0 P T
3757 — 322

P=
var 9m2A

60757 — 4711687 + 1310720

kw P=
SKW 2003757 — 32°)"2

—3(648007" + 33306372 — 50257927 + 10485760)
5(3757 —32%)?

exc P=

An already well-known result is the probability density function f; (/) of the
length of an edge of a Delaunay cell,!'"

Anl? 2 2 (=
lex = = ) dv
<\/- o p< > \/7;>+\/7_J[(Am"?/2]lexp( ! )d\>‘

120
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Substituting ® = L and without loss of generality /=26 sin(«, /2), this can
be derived from (2.1). The further results are

=2k+1(k+1)(k+3)F((k+l)/2)

ELk 3(k+2) n.(k+l)/2/{k/2
4057 — 322 32(10240 — 31597)
varL=—grs S = S (4057 — 322) 7
—3(30982572 — 43130887 + 10485760)
exc L=

5(4057 — 32%)2

Analogous to that of the angle 4 in the three-dimensional case, the well-
known probability density function f,(«) of the angle 4 in a cell spanned
by two of its edges can be given, namely

4
f,,(oc)=3—nsin<x[sinzx+(7r—<x)cosoc], Oa<nm
with
i1 472 —15
EA=—, EA*=
3 18
n? 47* — 407> + 105
EA’=——n, EAt= ———————
6 30
7’ 5 4n(n*—9)
ard="c—>,  skwA=— 53—
var A 976 skw (4 —30)"
ch—3(765_8n4)
T 522 —15)

5. DISCUSSION

The present paper gives an exact analytical description of the behavior
of geometrical characteristics of the three-dimensional Delaunay tessellation
generated by a stationary Poisson point process. The results are based on a
general formula given by Miles;*! they are obtained by a unified method.

The characteristics investigated here are of great interest in several fields
of physics, as evidenced by the fact that many authors have studied them
intensively by means of simulation. The special case that the generating
point process is Poisson has been summarized in Kumar and Kurtz.'”’ The
probability density function of 24, the double of the angle inside of a face,
also has been studied by Lorz!'? and van de Weygaert''* by simulation.
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In contrast to the multiplicity of the simulation studies, analytical
results concerning the Delaunay tessellation are given only in a few papers.
These are, for example, Miles,'*’ with the important formulas describing
the size and shape of the Poisson Delaunay cell of an arbitrary dimension,
and Mpoller,'’ who partly obtained Miles’ results in another way. Mean
values for the three-dimensional Poisson Delaunay cell are given by Okabe
et al.'" Analytical expressions for the probability density functions of the
angle A4 in a face are given by Kumar and Kurtz.'*' Rathie'®’ has given an
analytical expression for the probability density function of the volume V
of the three-dimensional Poisson Delaunay cell.

In the present paper, probability density functions have been given for
the volume of the three-dimensional Poisson Delaunay cell, for the area
and the perimeter of a face, for the edge length, and for an angle inside of
a face. These probability density functions are in general threefold integral
formulas. The elegant expression given by Rathie'®’ is a sequence of com-
plicated analytical standard functions, whereas the integral formulas given
in the present paper are more suitable for a numerical evaluation of the
probability density functions.

Analytical expressions for higher moments of the equivalent radius R,
the area S, and the perimeter P of a face have been given for the first time.
A short summary has been given for the one- and two-dimensional cases.
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